LKR Series: Linear Module

Main Introduction

Caution

This series of products belong to electromechanical equipment, in order to maintain the safety of users, before selecting the model and the actual operation of this product, please be sure to read the relevant information and the following precautions and use in accordance with the instructions, if not in accordance with the precautions to use this product and cause abnormal function, damage or other accidents, the company will not be responsible.

Life Safety

O This product is intended for industrial use and should not be used on security components directly related to human life or personal safety.

O When operating this product, personnel should remain outside the range of mechanical action to avoid entrapment or other safety accidents.

O When this product is connected to a motor and energized, the person installing the cardiac pacemaker should remain one meter away to avoid interference.

O This product should not be installed near fire sources, flammable materials, or combustible gases to prevent fire.

Storage and Installation

O Avoid dropping or collision when handling.

O When storing this product, it is recommended to store it flat and pack it properly to avoid exposure to high temperature, low temperature and humidity.

O Do not disassemble or modify the product by yourself to avoid foreign objects entering or damaging the product, causing abnormal function or safety accidents.

O The product should be locked during installation to avoid loosening due to vibration.

O When installing the coupling and motor, use the appropriate fittings and pay attention to the centerline of the shaft and then lock the screws, do not force the installation.

Operation Use

O Operation shall be in accordance with the rated conditions of the data, such as maximum speed and load, to avoid functional damage or safety accidents.

O Foreign objects such as dust and chips should be avoided to enter the ball circulation system, which may cause damage, shortened life or abnormal function.

O The operating environment temperature should be below 80°C. If the product needs to be applied in high temperature place, please consult us.

O If the environment is special, such as strong vibration, vacuum chamber, clean room, corrosive chemicals, organic solvents or chemicals, extremely high or low temperature, wet splash, oil drops and oil mist, high salt, heavy load, vertical or cantilever installation, etc., please consult us first to confirm the conditions of application of the products.

O If the load is in danger of falling when installed vertically, it is recommended to install appropriate brakes and confirm that the brakes function properly before use.

Maintenance

O The grease should be replenished before the first use, please pay attention to the type of greases, different ones should not be mixed.

O Under normal use, it is recommended to check the running condition once every 100km, remove the dirt, and replenish the grease, the guide way and ball screw should be greased.

Installation instructions for motor flange, motor and coupling

O Three types of misalignments may exist while installing the ball screw with motor axis, which are shown as below.

I.Parallel misalignment[A] 2. Angular misalignment [B]:

3. Axial misalignment [C]:

O Confirmation of axial alignment: When the balls crew shaft and motor are connected by a coupling, rotate the coupling gently to assure its rotating without restrictions. This will ensure the concentricity of both axes.

The figure is shown as below.

O The use of a motor mounting fixture might be necessary to make sure the ball screw spindle end (A) and the positioning hole of the motor flange (B) are concentric. The illustration is shown below.

O Precaution:

1. During motor flange mounting, the misalignments between ball screw spindle end and the positioning hole of the motor flange should be under controlled which is within the accepted misalignment range of the relative coupling.

2. The balls crew spindle end or the coupling may be broken if the coupling is mounted incorrectly or the misalignments are out of the range limit.

3. Make sure the accepted misalignments of the coupling is sufficient for your application, flexible couplings are recommended, disc type are preferred. Please consult us for coupling installation or selection.

Selection Steps

When choosing a module based on different conditions and restrictions, below selection steps may be helpful:

1. User requirements

- O Effective stroke
- O Location restrictions (width, height, length)
- O Installation type (horizontal, vertical, side mount)
- O Position of gravity, center of loading

O Operating conditions (lead, speed, acceleration and deceleration, duty cycle)

O Environment (high temperature, vibration, oil, water, corrosion)

3. Configuration

4. Motor selection

O AC servo motor

O Stepper motor

(included, plug-in)

O With or without brake

- O Single axis
- O Double axis
- O Multi axis
- O Special combination

6. Operation analysis

- 7. Other accessories
- O Acceleration

O Actual operation mode (V-T diagram) O The use of related accessories (limit switches, adapter plate, retractable sheath, the slip ring protection tube)

2. Demand for precision

- O Position accuracy
- O Repeatability
- O Running parallelism

5. Motor load calculation

- O Maximum speed
- O Motor resolution
- O Motor torque calculation

8. Final confirmation

- O Conditions of use should be confirmed
- O Price, deadline
- O Alteration
- O Special requirements

Precision

1. Positioning accuracy

The maximum difference (absolute value) between the actual arrival distance and the reaching distance based on the original setting.

2. Repeatability of round-trip position (precision)

The maximum difference in the entire cycle. The difference in the positioning value measured from a setting position during the round trip movement of the module's slider.

3. Running parallelism

(1) The parallelism between module platform plane and module installation plane. Position the scale at the center of the slider, and then put the pointer on the installation plane. Finally, take the maximum deviation value measured in the full stroke as the result.

(2) The parallelism between module platform and the installation datum. Position the scale at the center of the slider, and put the pointer on the installation datum. Finally, take the maximum deviation value measured in the full stroke as the result.

Speed

1. Maximum linear velocity

The module's maximum linear velocity (V) is calculated from the ball screw speed (S) multiplied by the lead (L).

V(mm/sec)=S(rpm)÷60×L(mm)

2. Maximum rotational speed

The maximum allowable rotational speed of the ball screw is decided by it's critical rotational speed. If the ball screw speed exceeds it's critical speed it may result in resonance. Hence, the critical speed is related to the ball screw length, the critical speed can help to determine the ball screws effective stroke and total length.

The maximum allowable rotational speed of the ball screw is calculated as follows:

$$N_{\rm P} = 0.8 \times 2.71 \times 10^8 \times \frac{M_{\rm f} \ d_{\rm r}}{L_{+}^2}$$

 N_p = the maximum allowable rotation speed (rpm)

M_f= breakdown of the assembly mounting type

d _r = screw root diameter (mm)
L _t = screw span between bearings (mm)

3. Acceleration/Deceleration

Speed is specified as the working speed of the sliding table. The sliding table must accelerate to the designated speed as it moves to it's target position, in opposite, it must decelerate before it comes to a stop.

Acceleration/deceleration is programmed by the operator according to the needed conditions. The acceleration is set at 0.3G calculated for lead = 5. $1G = 9.8m/s^2$, therefore $0.3G = 2940mm/s^2$. The maximum load shown in the catalog is based on this acceleration/deceleration.

Attention: Acceleration/deceleration will generate an inertia force on the load. For higher acceleration/deceleration, load will increase accordingly. In addition, higher acceleration/deceleration could generate a possible impact and should be noted.

4. Working cycle

The working cycle is determined by the operator. Below figure illustrates how the working cycle is generally calculated. The variables include acceleration time T_a , constant speed time T_c , deceleration time T_d , and idling time T_f .

Accelerating Speed=V/T_a

Decelerating Speed=V/T_d

Working cycle (sec) = $T_a+T_c+T_d+T_f$

Working time=working cycle × frequency

Operating ratio=working time / (working time+off time)

Operating ratio is closely related to the load of the motor. Normally, the operating ratio is not recommended to exceed 0.5 for long, continuous work.

Motor Loading Calculation

1. Confirm the moving conditions required by the loading mechanism, including acceleration, deceleration, the weight of the mechanism and it's movement.

2. Momentum loading calculation:

Momentum calculation for loads moving along a straight line

$$\mathbf{J}_{\mathrm{L}} = \mathbf{W} \times \left(\frac{\mathbf{V}}{2 \times \mathbf{\pi} \times \mathbf{N} \times \mathbf{10}}\right)^{2} = \mathbf{W} \times \left(\frac{\Delta \mathbf{S}}{2\mathbf{0} \times \mathbf{\pi}}\right)^{2}$$

J_L: Momentum of load, calculated to the motors axial output (kg.cm²)
 V: Velocity of load along a straight line(mm/min)
 ΔS: Displacement of load per motor rotation(mm)
 W: Weight of load (kg)
 N: Rotational speed of motor[r/min]

3. Select suitable specification of motor with the proportional principle per the momentums between load and motor.

4. Calculate the acceleration and deceleration torques per the momentum of the selected motor combined with the momentum of the load.

Acceleration torque:

$$T_a = \frac{(J_L + J_M) \times N}{9.55 \times 10^4 \times T_{psa}}$$

Deceleration torque:

$$T_{d} = \frac{(J_{L}+J_{M}) \times N}{9.55 \times 10^{4} \times T_{psd}}$$

 J_L : Momentum of load, calculated to the motors axial output (kg.cm²)

 J_{M} : Momentum of motor (kg.cm²)

N : Rotational speed of motor (r/min)

T_{psa}: Acceleration/deceleration time(s)

T_{psd} : time (s)

5. Per the loads, installation methods, friction coefficients, and motor efficiency, calculate the torque at uniform motion.

$$T_{L} = \frac{F \times V}{2 \times 10^{3} \times \pi \times \eta \times N} = \frac{F \times \triangle S}{2 \times 10^{3} \times \pi \times \eta}$$

- F : Axial force moving along a straight line $F=F_{C} + \mu x (Wxg + F_{0})$
- T_L : Load torque (N.m)

 F_{C} : External force exerted in the axial direction (N)

 F_0 : External positive pressure exerted by the load onto the module (N)

W : Load (including sliding platform) (kg)

- μ : Friction coefficient
- η : Mechanical efficiency
- V : Velocity of load in a straight line (mm/min)
- N : Rotational speed of motor (r/min)
- g : Gravity (9.8m/s^2)
- ΔS : Displacement of load per motor rotation

6. The maximum output torque of the selected motor should be larger than the sum of the acceleration torque and load torque; if this condition is not met, the model number needs to be changed and calculated until the requirement is satisfied.

7. Obtain the continuous effective torque per the load torque, acceleration torque, deceleration torque, and continuous torque.

$$T_{\text{RMS}} = \sqrt{\frac{T_a^2 \times T_{\text{psa}} + T_L^2 \times t_c + T_d^2 \times T_{\text{psd}} + T_{LH}^2 \times t_h}{T_f}}$$

T _{psa} : Acceleration time	t _c : Constant speed time					
T _{psd} : Deceleration time	t _h : Stop time					
T _f : Cycle time	T _a : Acceleration torque					
T_L : Load torque	T _d : Deceleration torque					
T_{LH} : Continuous torque (horizontal movement, $T_{LH}=0$)						

8. The rated output torque of the selected motor should be larger than the continuous effective torque; otherwise, the model number needs to be changed and calculated until the requirement is compliant.

Installation

If the ball screw is used in the vertical direction (Z axis), the load should be within the maximum value indicated for vertical loading. Vertical installation using timing belts is forbidden.

Service life

For horizontal, side or slope (less than 30 degrees) orientation, the service life depends on the life of guide way, but for vertical or slope (more than 30 degrees) orientation, the service life depends on the life of ball screw or fixed bearing (on the which is shorter).

The listed dynamic load (Fy, Fz, Mx, My, Mz) is based on a service life of 10,000km of travel. If the load is less than the loading condition (Fy/Fyd + Fz/Fzd + Mx/Mxd + My/Myd + Mz/Mzd) \leq 1), the service life could be extended. If the load is over, the service life will be less than 10,000km. To ensure long term use, it is recommended that the loading must be within the listed range.

Maintenance

All the related accessories, ball screw and guide way need to be maintained. After every 3 months or 100km travel distance, it is recommended to add grease to the ball screw and guide way. Clean any dust or debris from the system. Replace the grease if there is any color change. If you have any further questions, please consult us.

LKR Series

The LKR Series linear module integrating a ballscrew and guideway forms a modularized product. The modularized design can help customers save time, cost and system inspection. It is driven by a ballscrew when a guideway slides on an optimized U-rail to achieve higher accuracy and greater stiffness.

Features

- O High accuracy
- O High stiffness
- O Compact
- O Easy intallation and convenient

Application

- O High-precision industry
- O Photovoltaic industry
- O Automation equipment
- O Lithium battery equipment

Various Specifications

The following linear modules have been developed to meet various needs, and are available for customers to choose according to usage requirements, space, and load.

Accessories Option

Aluminum cover, motor adaptor flange and limit switchs are available for option to meet specific demands.

- O Aluminum cover: contamination prection
- O Motor adaptor flange: connection for different types of motors
- O Limit switchs: starting point, positioning and other saftety matters

Ordering Information

Load Specifications

 \mathbf{M}_{R}

		Ballscrew				Guideway												
						Basic	Basic	Static Rated Moment										
Model No.		Nominal Diameter (mm)	Lead (mm)	Basic Dynamic Load (N)	Basic Static Load (N)	Dynamic Load Rating (N)	Static Load Rating (N)	Allowable Static Moment M _p (N.m)	Allowable Static Moment M _Y (N.m)	Allowable Static Moment M _R (N.m)								
						Block A	Block A	Block A1	Block A1	Block A1								
	Precision	0	2	2136	3489	8007	0007 12010	116	116	222								
LKK5002	Normal	0	2	1813	2910	8007 1.	12910	110	110	222								
	Precision	12	5	3744	6243	13230	21/62	152	152	/10								
LKN0005	Normal	12	J	3377	5625	15250	21402	152	152	419								
	Precision	12	10	2410	3743	12220	12220 21462	12220 21462	12220 21462	12220 21462	12220 21/62	12220 21/62	12220 21462	12220 21/62	13230 21/62		150	/10
LKNOUIU	Normal	12	10	2107	3234	13230	21402	152	152	419								
100610	Precision	15	10	7144	12642	21/150	50764	(22)	(22	1507								
LKR8610	Normal	15	10	6429	11387	31458	50764	022	022	1507								
1409620	Precision	15	4645 7655 24459	21/150	21450 50764	622	622	1507										
LKR8620	Normal	12	20	4175	6889	6889 31458	50764	64 622	622	1207								

Accuracy Grade

Model	Rail	Repeatability		Accu	Accuracy		Running Parallelism		Torque (N.cm)
model	Length	Precision	Normal	Precision	Normal	Precision	Normal	Precision	Normal
	150								
	200	+ 0 003	+ 0 005	0.02	_	0.01	_	Л	2
LKNJU	250	<u> </u>	± 0.005	0.02	-	0.01	-	4	
	300								
	150								7
	200	+ 0 002	± 0.005	0.02	-	0.01	-	15	
	300	10.005							
LKNOU	400								
	500	+ 0 003		0.025		0.015		15	7
	600	10.005	10.005	0.025		0.015		15	
	340								
	440	+ 0 002	+ 0 00E	0.025		0.015		15	10
	540	± 0.005	10.005	0.025	-	0.015	-	15	10
LKR86	640								
	740	± 0.003	± 0.005	0.03	-	0.02	-	17	10
	940	± 0.003	± 0.005	0.04	-	0.03	-	25	10

Maximun Speed Limit

Madal	Ballscrew Lead	Rail Length	Speed (mm/sec)				
iviodei	(mm)	(mm)	Precision	Normal			
		150	270	270			
	02	200	270	270			
LKKOU	02	250	270	270			
		300	270	270			
		150	550	390			
		200	500	390			
	OF	300	550	390			
LKKOU	05	400	550	390			
		500	550	390			
		600	340	340			
		150	1100	790			
	10	200	1100	790			
		300	1100	790			
LKKOO		400	1100	790			
		500	1100	790			
		600	670	670			
		340	740	790			
		440	740	520			
	10	540	740	520			
LKKØD	10	640	740	520			
		740	740	520			
		940	610	430			
		340	1480	1050			
		440	1480	1050			
	20	540	1480	1050			
LKKØD	20	640	1480	1050			
		740	1480	1050			
		940	1220	1050			

Life Calculations

1. Service Life

Under repeated stress between the raceway and the rolling elements, pitting and flaking will occur as it reaches fatigue failure. The service life of the LKR linear module is defined as the distanced traveled before any failure of the raceway or rolling elements appear.

2. Nominal Life

The service life varies greatly even when the LKR units are manufactured in the same way or operated under the same conditions. For this reason, nominal life is used as the criteria for predicting the service life of a LKR unit.

3. Nominal Life Calculation

The calculating formulas are divided into two parts, guideway and ballscrew. The smaller value of the two would be the recommended nominal life of the LKR unit.

Nominal life formulas for both the guideway and ballscrew depend on several parameters and are shown below.

O Guideway

$$L = \left(\frac{f_{t}}{f_{w}} \cdot \frac{C}{P_{n}}\right)^{3} \times 50 \text{ km}$$

L : Life Rating (km) f_t: Contact Coefficient (ref. Table1) f_w: Loading Coefficient (ref. Table2) C: Basic Dynamic Load Rating (N) P_n: Calculated Loading (N)

Table 1

Block Type	Contact Coefficient f_t
A1	1.0

Table 2

Operatin	Loading Coefficient f	
Thrust and Vibration	Velocity	
No Thrust V<15m/min		1.0~1.5
Normal Vibration 15m/min≤V≤60m/min		1.5~2.0
High Vibration	V>60m/min	2.0~3.5

O Ballscrew and Bearing

$$L = \left(\frac{1}{f_{w}} \cdot \frac{C_{a}}{P_{a,n}}\right)^{3} \times 10^{6} \text{ rev}$$

L : Life Rating (rev.) f_w: Loading Coefficient (ref. Table2) C_a : Basic Dynamic Load Rating (N) $P_{a,n}$: Axial Loading (N)

Lubrication

Insufficient lubrication of the guideway would lead to a reduction of the service life.

The lubricant provides the following functions:

- O Reducing rolling friction and avoiding abrasion
- O Providing a lubricating film and extending the service life
- O Anti-rusting

Lubricating Grease

Re-lubricating the robot every 100km is recommened. Generally, grease is applied for speeds under 60 m/min,

a grease with a higher viscosity should be used.

$$T = \frac{100 \times 1000}{V_e \times 60}$$

$$T: Lubricating frequency (hrs)$$

$$V_e: Speed (m/min)$$

Grease Nipple Location

LKR 50 Without cover

Rail Length L2 (mm)	Total Length L1 (mm)	Maximum Stroke (mm)	G (mm)	K (mm)	n	N.W./ea (kg)
150	223	70	35	80	2	0.97
200	273	120	20	160	3	1.17
250	323	170	45	160	3	1.36
300	373	220	30	240	4	1.56

LKR 50 With cover

Rail Length L2 (mm)	Total Length L1 (mm)	Maximum Stroke (mm)	G (mm)	K (mm)	n	N.W./ea (kg)
150	223	70	35	80	2	1.10
200	273	120	20	160	3	1.31
250	323	170	45	160	3	1.52
300	373	220	30	240	4	1.73

LKR 60 Without cover

COUP-LINK[®]

View B

-4-M4×0.7¥8 PCDA#40

6

4-M3×0.5⊽8 PCDA#40

Rail Length L2 (mm)	Total Length	Maximum Stroke (mm)	G (mm)	K (mm)	n	m	N.W./ea (kg)
150	222.5	60	25	100	2	2	1.69
200	272.5	110	50	100	2	2	2.03
300	372.5	210	50	200	3	2	2.70
400	472.5	310	50	100	4	4	3.38
500	572.5	410	50	200	5	3	4.05
600	672.5	510	50	100	6	6	4.73

LKR 60 With cover

Rail Length L2 (mm)	Total Length	Maximum Stroke (mm)	G (mm)	K (mm)	n	m	N.W./ea (kg)
150	222.5	60	25	100	2	2	1.98
200	272.5	110	50	100	2	2	2.32
300	372.5	210	50	200	3	2	2.99
400	472.5	310	50	100	4	4	3.67
500	572.5	410	50	200	5	3	4.34
600	672.5	510	50	100	6	6	5.02

LKR 86 Without cover

Section A-A

Rail Length L2 (mm)	Total Length	Maximum Stroke (mm)	H (mm)	n	m	N.W./ea (kg)
340	441	216.5	70	3	2	5.87
440	541	316.5	20	4	3	7.10
540	641	416.5	70	5	3	8.33
640	741	516.5	20	6	4	9.56
740	841	616.5	70	7	4	10.79
940	1041	816.5	70	9	5	13.25

LKR 86 With cover

Rail Length L2 (mm)	Total Length	Maximum Stroke (mm)	H (mm)	n	m	N.W./ea (kg)
340	441	216.5	70	3	2	6.75
440	541	316.5	20	4	3	8.07
540	641	416.5	70	5	3	9.39
640	741	516.5	20	6	4	10.71
740	841	616.5	70	7	4	12.03
940	1041	816.5	70	9	5	14.66

Motor Housing and Motor Adaptor Flange LKR50

Motor Housing F0

Motor Adaptor Flange F1

Motor Adaptor Flange F2

LKR60

Motor Housing F0

Motor Adaptor Flange F1

Motor Adaptor Flange F2

LKR86

Motor Housing F0

Motor Adaptor Flange F1

Motor Adaptor Flange F2

Switch

Switch Rail

Switch

Size	а	b	С	d	е	f
LKR50	45.5	59	1	10	15	11
LKR60	51	63.8	4	14.5	8	13
LKR86	63.5	76.7	8	18	8	18
LKR100	71	84	10	20	9	20

Size	а	b	С	d	е	f
LKR50	41.3	48	1	10.5	10.2	11
LKR60	46.2	52.8	4	14	3.2	13
LKR86	59	65.7	8	18	3	18
LKR100	66	73	10	20	4.2	20

Size	g	h	i	j
LKR50	39.5	5.7	7	19.5
LKR60	44.5	9	2	9
LKR86	57	13	1	13
LKR100	64.5	15	2.5	15